

Industry Best Practices for the
Software Development Lifecycle

Quarterly Report #1

May 1, 2005 – July 1, 2005

for the
Montana Department of Transportation

By

Ray Babcock
Gary Harkin

Hunter Lloyd

Computer Science Department
Montana State University

July 14, 2005

 - - 2

1. Introduction

The MDT has asked us to provide industry best practices methods and tools for their
software development life cycle (SDLC). We have studied the current methodology and
compared it to industry practices and prepared this report and the associated documents.

An industry best practice is “a technique or methodology that, through experience and
research, has proven to reliably lead to a desired result.” In the area of software
development, there are many different views of what constitutes a best practice. As
pointed out in the call for proposals by the MDT, there are a number of organizations that
offer industry best practice methodologies and they are not always compatible nor do
they have a common perspective on the goals of a software development effort. Our goal
is to identify a set of industry best practice techniques that fit the needs of the MDT and
provide a consistent and robust process for software development.

We have looked at a wide variety of current industry methodologies and tried to identify
those that are both tried-and-true, and widely accepted. We believe that the Unified
Software Development Process [Jac1999] represents the closest thing to an industry
standard for software development, and we have borrowed heavily from those methods.
We also believe there is much to be learned from the Agile development methods, and we
have referred to those liberally [McC1996]. The Project Management Professional
(PMP) certification of the Project Management Institute (PMI) represents best practices
in project management [Hel2004] and that information is used extensively in developing
strategies for conducting a software project. The Capability Maturity Model Integration
for Software is widely used worldwide for process improvement and reengineering, and
we borrowed from those methods where appropriate [Ahe2004]. For a complete analysis
of software engineering, we used Software Engineering [Pre2001] as a guide, but the
entire area of software engineering is well developed and virtually any book will do. We
have suggested the Unified Modeling Language as a representational method for
developing software designs, and we recommend UML Distilled [Boo2004] and UML for
Mere Mortals [Mak2005] as good user references and The Unified Modeling Language
Reference Manual [Rum2005] for a complete analysis. In the tried-and-true category, we
used information from Joel on Software [Spo2004], Facts and Fallacies of Software
Engineering [Gla2003], The Software Development Edge [Mar2005], and Peopleware
[DeM1999]. For user interface design, we recommend Don’t Make Me Think [Kru2000]
and User Interface Design for Programmers [Spo2001].

One issue that is important to discuss is how to deal with multiple viewpoints of industry
best practices. We feel that consistency and robustness are more important to the success
than having every bell-and-whistle, so we have attempted to use only a few
methodologies and to combine them in a manner that provides those benefits. As
mentioned previously, the Unified Software Development Process (USDP) [Jac1999] is
the industry standard analog to the Rational Unified Process from Rational Systems and
is widely used for software development in industry. USDP is a relatively complex
process that focuses on the software development process from inception through release.
While it is strong in software development it is weak in the area of project management.

 - - 3

The Process Management Professional [Hel2004] strategies have excellent
recommendations for project methodologies, but do not consider software development
explicitly.

The Capability Maturity Model Integration [Ahe2004] is primarily about process
reengineering, which can be a part of every software development project and provides
excellent practices for software project management, but the scope is too narrow to be the
only source. Software CMM is the staged model from CMMI that is pertinent to
software development, and it has five levels with a set of key process areas dictated for
each level:

1. Initial, focus is competent people
2. Repeatable, focus is basic project management
3. Defined, focus is process standardization
4. Managed, focus is quantitative management
5. Optimizing, focus is continuous process improvement

While not specifically stated, Level 3 could be identified as the appropriate focus for this
project, as the MDT attempts to standardize its software development process in
accordance with industry practices. That level will be the primary focus of this work,
along with some process areas from Levels 2 and 4. The key process areas are:

• *Statistical Process Management (L4)
• *Peer Reviews (L3)
• Project Interface Coordination (L3)
• *Software Product Engineering (L3)
• *Integrated Software Management (L3)
• *Organization Training Program (L3)
• *Organization Process Definition (L3)
• Organization Process Focus (L3)
• *Software Configuration Management (L2)
• *Software Quality Assurance (L2)
• Software Acquisition Management (L2)
• *Software Project Control (L2)

Those marked with an asterisk are those that are impacted by this work. Due to the
limitations on the scope of this project, none of these will be completely satisfied, but all
will be improved.

If you study the other industry best practices methodologies, you will find that they
provide similar methods and characteristics. We have attempted to provide a
compilation, which is at the cutting-edge technologically, but also verifiably practical and
robust. We have used the existing MDT documents and templates as much as possible
and have indicated changes to be made where appropriate.

 - - 4

1.1 Report Organization

This report is not a single document, but a series of documents that provide a strategy for
implementing an industry best practices software development methodology, including
templates, forms and software recommendations. The report consists of five parts:

• Recommendations and discussions of each part of the project.
• A series of processes outlining a series of steps to be followed during various

phases of the project.
• Documents to be used in the various phases of the project cross-referenced in the

process outlines.
• Templates and methods to be used in software used to support a project.
• Where appropriate, web pages that would be used to support a project.

The division of information that we have followed is that there is the SDLC process and
several sub-processes that represent the fundamental nature of software development.

• The SDLC
• Requirements development and management
• Project management
• Software design
• Software development
• Project implementation

There is overlap between these processes in some areas, but this breakdown provides
reasonably concise bodies of material with common methods that integrate into the
SDLC. Each is discussed below.

2. The Software Development Lifecycle

The SDLC is the set of phases that a project must complete. The proposed phases for the
MDT are Planning, System Analysis, System Design, Technical Design, Development,
Implementation and Conclusion. In various references, you find different breakdowns of
the SDLC, but they contain effectively the same steps. Some are software-oriented and
have no planning step, and many do not differentiate between the System and Technical
Design phases, and there are slight differences in the order of the steps or their content.
The number of phases in the organization of the tasks is largely irrelevant within the
range of those strategies that are proven to work. We believe that the MDT proposed
phases are workable and meet the needs of the MDT. The use of both System and
Technical Design phases is advantageous because it breaks a relatively complex phase
into two parts, which can be managed more effectively.

The justification for these choices can be found in [Jac1999] which describes the USDP
life cycle. It has 5 phases: Requirements, Analysis, Design, Implementation and Test.
The MDT adds a planning process, which is necessary in a business context, combines

 - - 5

Requirements and Analysis in one phase and breaks the Design phase into two phases.
That seems to be a large change, but it actually provides an identical result, pushing part
of the Analysis phase into System Design and leaving the System Analysis phase as
essentially the same as the USDP Requirements phase. The MDT could, theoretically,
add a Requirements phase, but there seems to be no good reason for doing so. MDT
process includes Test in Development and Implementation, but that is not a significant
difference.

The Software CMM requirement for Organization Process Definition at Level 3
[Ahe2004] is met by this process.

Each phase of the SDLC is discussed below in terms of the justification for the tasks in
the phase. There is one part of this process that is universal, and that is the Project
Planning Process, which is a subsystem that impacts each phase. The Project Planning
Process schedules and assigns resources to tasks and details the collection of data to be
used in evaluating performance and improving estimates. It will be covered
independently in some detail.

The SDLC process is detailed in Appendix A.

Recommended forms and templates are identified by the process from which they derive
and by the SDLC phase in the form Process-Phase-Name. For example, P-P-Workscope,
where P-P refers to project management and the Planning phase and the form relates to
the workscope. The processes are:

• Project Management (P)
• Requirements Management (R)
• Software Analysis and Design (A)
• Software Development (S)
• Implementation (I)

And the phases are:

• Planning (P)
• System Analysis (A)
• System Design (S)
• Technical Design (D)
• Software Development (S)
• Implementation (I)
• Conclusion (C)

2.1. Planning

The planning phase is dictated by the MDT IT Planning Process document, which
requires the preparation of an IT Project Nomination to be submitted for approval. The
proposed Planning Phase process is designed to provide the information for the

 - - 6

Nomination and to establish a foundation for continuance of the project. The tasks
proposed are:

• Receive the IT Nomination request.
• Develop project description.
• Identify project stakeholders.
• Develop a preliminary work scope.
• Develop an initial project team.
• Create the Use Case business model.
• Develop a preliminary deliverables manifest.
• Create a preliminary plan and schedule.
• Develop a preliminary risk assessment.
• Develop a Benefit/Cost Analysis.
• Create the IT Nomination according to stated criteria.
• If project not approved, stop.
• Plan the System Analysis phase.
• Create system analysis team list.
• Create system analysis plan.

These steps are based on information in [Ahe2004] and [Hel2004]. The CMMI specifies
in Generic Process (GP) 2.2, the need to establish and maintain a plan for performing the
process. The PMP mandates that project initiation and planning perform:

• An analysis of need.
• The development of project goals.
• The collection of project requirements.
• A list of project deliverables.
• The identification of project constraints.
• The development of a project schedule.
• An estimate of projected resource needs and budget.

The list of tasks above meets these requirements and honors the specifications of the
MDT process. The Use Case Business Model is derived from the USDP and represents
our belief that UML is the best overall design methodology for consistency throughout
the lifecycle.

2.2. System Analysis

This phase takes the preliminary plan and transforms it into a detailed project plan that
can be used to control and monitor the project. The list of tasks is:

• Identify project sponsor and project manager.
• Develop the requirements document.
• Develop a data dictionary.
• Develop a project work scope.

 - - 7

• Develop a baseline project plan.
• Finalize the project team.
• Develop the risk management plan.
• Update the project plan.
• Update benefit-cost analysis.
• Go/no-go decision.
• Plan the System Design phase.

These tasks are a combination of suggestions from the USDP and the PMP. The key
deliverables from this phase are the requirements that drive the software development,
and the detailed project plan that drives the lifecycle. Each of these is a dynamic
document that is subject to change in succeeding phases, but those changes are an
important metric to be collected and used in improving the SDLC process.

The Requirements Document and Project Plan are so important that they are treated
separately in this document.

The justification for the task list can be found in the USDP [Jac1999] and in the PMP
[Hel2004]. The USDP produces a Requirements Document, and the PMP suggests that
the phase should produce a Workscope and Baseline Project Plan. We have added
updates for the benefit-cost analysis to provide a check on the initial estimates, team
selection and planning for the next phase.

A risk management plan is mandated by both the USDP and the PMP to insure that
potential problems are identified and handled at each stage.

2.3. System Design

This phase converts the requirements and data dictionary into a software architecture, an
implementation strategy and produces an updated project plan. The tasks are:

• Develop the system specification.
• Update requirements.
• Develop the architectural model.
• Develop the data dictionary model.
• Develop the user interface storyboards.
• Develop the documentation plan.
• Develop a user support plan.
• Develop a training plan.
• Develop a conversion plan.
• Develop a security plan.
• Develop a system test plan.
• Develop an acceptance test plan.
• Develop the acceptance test cases.

 - - 8

• Update the project plan.
• Plan the Technical design phase.

These tasks are derived from the USDP [Jac1999] and for the project planning portion,
from the PMP. The USDP Analysis phase produces an Analysis Model, which includes a
data dictionary that might be separate in a non-object-oriented programming
environment. In the USDP, user interface design is in the Design phase, but we believe
that best practices would break this into two parts to avoid costly mistakes. This is
discussed in more detail later. The need to design Acceptance Tests and System Test
early is addressed here. The project planning portion follows the requirements of the
PMP [Hel2004] with regard to continuous updating of the plan. Meeting the CMMI
[Ahe2004] requirements for improved quality processes adds a number of components,
including a training plan, test plans, user support plans and documentation plans.

2.4. Technical Design

This phase converts the system design into a technical design that is more attuned to
implementation in a programming language and produces mockups of the user interface
design. The tasks are:

• Develop the functional design specification.
• Develop the data model specification.
• Develop the user interface mockups.
• Update the requirements document.
• Update the system specification document.
• Develop a unit test plan.
• Update the system test plan.
• Update the acceptance test plan.
• Create a defect tracking system.
• Update the project plan.
• Create a Development phase plan.

These tasks are derived from the USDP [Jac1999] and for the project planning portion,
from the PMP. The USDP Design phase produces a Design Model, which includes a
system design, subsystem designs, interface specifications and class architectures. We
have added a System Specification to this list, which is a more formalized presentation of
the Requirements Document. Having such a document reduces the likelihood of
potential design errors. Unit tests are designed here, although the USDP suggests that
this happen in the Implementation phase. We feel that performing the design here will
speed implementation by not having the programming team spending its time on this
activity, or possibly ignoring it. The USDP addresses the user interface design issue here
as well.

The project planning portion follows the requirements of the PMP [Hel2004] with regard
to continuous updating of the plan. Meeting the CMMI [Ahe2004] requirements for
improved quality processes adds a defect tracking system to insure that design and

 - - 9

implementation errors are identified, their resolution verified and the whole process
measured.

2.5. Development

This implements the system design to produce running software and documentation. The
tasks are:

• Develop the running software.
• Develop the user documentation.
• Develop the product documentation.
• Develop the training courseware.
• Create a configuration management system.
• Update the requirements document.
• Update the specification document.
• Perform successful unit tests.
• Perform successful system tests.
• Update the project plan.
• Create an Implementation phase plan.

This is the Implementation phase in the USDP and fits the task list here, although it is
obviously a complex activity. The PMP and CMMI best practices mandate a number of
tasks based on preliminary work in earlier phases, but it also creates a configuration plan
and management system as mandated by the Software CMM.

2.6. Implementation

This phase performs the installation and acceptance testing of the software and training
for users. The tasks are:

• Install the beta test software.
• Collect user feedback.
• Review and update the requirements document.
• Review and update the specification document.
• Update product.
• Perform the acceptance test.
• Revise the user support plan.
• Revise the training plan.
• Perform training.
• Execute a user survey.
• Update the project plan.

This phase includes most of the Test phase of the USDP, but it includes significant tasks
that attempt to achieve the process quality goals of the CMM software, including the user
support plan, training and execution of a user survey. While the project is nearly

 - - 10

complete, it is important to perform final updates on the specification and requirements
documents and the project plan to insure that any changes discovered in testing are
properly accommodated and that project performance is adequately monitored.

2.7. Conclusion

This phase moves the software into the maintenance cycle, reviews the results of the
implementation and the conduct of the project and makes recommendations for the
future. The tasks are:

• Finalize customer approval.
• Identify and analyze problem areas in SDLC.
• Evaluate user survey results.
• Create a maintenance plan.
• Software enters the maintenance cycle.
• Review the project plan.
• Update policies and procedures

The USDP does not have this phase, but the PMP requires that a project have a closeout
stage to provide feedback for further projects. Also, the CMMI model of continuous
process improvement mandates that this phase continues indefinitely. It might be
worthwhile to change the name of this phase to Maintenance if the MDT deems it
appropriate. From a project point of view, defect tracking is an important metric to feed
back into the system for purposes of better estimating project requirements and
identifying design and development issues that require attention.

3. Requirements Development

The requirements are the driving mechanism for a software development project and one
of the most common areas mentioned in project failures. Without well-researched and
written requirements, it is impossible to meet the expectations of the users and poor
requirements leave a software project with little direction and no criteria for controlling
the development process. Unfortunately, good requirements are elusive because they are
typically based on non-specific descriptions of needs that are voiced by people who don’t
understand software, and requirements creep during a project can lead to extended
development time and project failure.

This is a problem of requirements development and project management. Here we
discuss both, but focus on the methods needed to develop good requirements
documentation.

3.1 Introduction

Even the smallest software development project benefits from clear requirements.
Building a house or other engineering project without plans is inconceivable. However,
many development projects begin with a brief interview and go straight to coding. The

 - - 11

most fundamental need according to Industry Best Practices for successful software
development is to begin with a good set of requirements.

Requirements communicate “What” is to be built. They describe in detail the proposed
inputs provided by the users and the proposed outputs generated by the software.
Graphical user interfaces are designed based on initial figures from the requirements
document.

Most people agree that the problem with developing good requirements is the problem
with communication between a developer and a user. Often they don’t speak the same
language and failures in communication often show up in software is difficult if not
impossible for normal users to use.

Many books have been written and many procedures for developing requirements have
been tried by industry. These range from highly structured packages that cost many
thousands of dollars down to newer ad hoc loosely structured systems such as extreme
programming. The cheapest and most effective method that works for the largest variety
of projects is to simply use English. Unambiguous English to be sure, but just plain
pictures and plain English carefully written provide requirements that can be read and
understood by both developers and users alike. They provide a written record of what the
proposed software development is to create and, when carefully done, provide an
unambiguous presentation. More detailed “developer oriented” software specifications
can be developed using the software requirements document as a safe and secure starting
point.

A good software requirements document is a dynamic, constantly changing, record of
what is desired for the software to accomplish. As prototypes are shown to the users and
more people read the requirements, changes can be handled by simply changing the
requirements document. At some point the requirements need to be “frozen” where
additional changes are held until the next version. However, error corrections and
functional modifications discovered as the software development proceeds can and
should still be reflected in the current requirements document. Even as the system is put
into operation, the requirements document should reflect the current system. If this is
done, the requirements document becomes a useful document throughout the entire life
cycle of the developed software.

 - - 12

3.2 Requirements Elicitation

Here is where a development team shines. Elicitation of a good set of requirements is
fundamental to the success of a software development project. Leffiingwell and Widrig
[Lef2003] in Managing Software Requirements give a good list of elicitation methods.

These are:

• Using Features
• Interviewing
• Requirements Workshops
• Brainstorming and Idea Redirection
• Storyboarding

However, any sequence of activities that clearly define a set of requirements is
considered useful.

3.2.1 Using Features

“System features are high-level expressions of desired system behavior”

In all the elicitation methods described, something should be written down. It does no
good to the development team if one user has a clear idea of what should be done but
nothing is written down to substantiate this user’s vision.

High-level expressions are usually not well defined, but they can lead a development
team to eliciting more specific requirements. They are often related to the user’s view of
system behavior. However, the development team should not leave these at a high level.
They should search for the need underlying the feature described. Features and
requirements, for that matter, must address real needs, not just pie-in-the-sky wishes.
Another definition of features proposed by [LEF2003] is “a service the system provides
to fulfill one or more stakeholder needs”.

Some example features are listed below:

• Manual control of doors during fire emergency
• Provide up-to-date status of all inventoried items
• Provide trend data to assess product quality
• Report deductions-to-date by category
• Vacation settings for extended away periods
• Minimum of two independent confirmations of attack authorization required
• Windows XP compatibility

3.2.2 Interviewing

 - - 13

Probably the most useful and most common technique to elicit requirements is the
interview. Just sitting around and talking does not work. A more structured approach is
required to produce good results.

Choosing the right people to interview is important. Try to have at least one
representative from each stakeholder group. These can be done at different times, but
everyone needs to be included.

A good technique to use when doing an interview is the recording of a restatement of the
comment provided by a stakeholder. This gives the stakeholder the ability to hear what
they said repeated and correct any misconceptions on the spot. And example follows:

Developer: “How many different invoices are used in a typical month?”
User Sue: “Fred, how many would you say?”
User Fred: “Oh, I’d say probably 120?”
User Sam: “Oh that’s not right, we often do over 200!”
User Sue: “How about we say 250 to be safe?”
User Fred: “Well he didn’t ask for a safe number, he asked for a typical number. I’d say
175.
User Sue: “O.k. anyone have a problem with 175?
Other Users:: “no”
User Sue: “We typically use about 175 invoices each month.”
Developer turns on his recorder and records “The company uses 175 invoices in a typical
month.”

This simple technique can provide a record of what is discussed without every cough,
inane comment, joke, or other irrelevant material being recorded. It also can catch a
misunderstanding if it occurs. For example suppose the following is the developer’s
recorded statement after the above comments:

Developer turns on his recorder and records “The company uses a maximum of 175
invoices in a typical month”.
User Sue: “Wait a minute! We said that was typical not maximum”
Developer turns on his recorder and records “Correction the company uses an average of
175 different invoices in a typical month.”

After the developers return to their location, the recorded sessions is played for the entire
development group and a set of requirement statements are generated.

 - - 14

3.2.2.1 Context Free Questions

Another good technique to enhance the success of interviewing in gathering requirements
is the use of “context free questions”. These are questions that can be asked without
regard to the context being discussed. They could be asked about ANY software
development project. Using them often elicits extremely useful information to enhance
the quality of the requirements gathered.

Example Context Free Questions follow: (The project name is assumed to be
MDTProject1)

• Who is the client for MDTProject1?
• What is a highly successful solution really worth this client?
• Should we use a single design team, or more than one?
• How much time do we have for this project? What is the trade-off between time

and value?
• Where else can the solution to this design problem be obtained? Can we copy

something that already exists?
• What problems does this system solve?
• What problems could this system create?
• What environment is this system likely to encounter?
• What kind of precision is required or desired in the product?
• Am I asking you too many questions?
• Do my questions seem relevant?
• Are you the right person to answer these questions?
• In order to be sure that we understand each other, I’ve found that it helps to have

things in writing so I can study them at leisure. May I write down your answers
and give you a written copy to study and approve?

• Is there anyone else who can give me useful answers?
• Is there someplace I can go to see the environment in which this product will be

used?
• Is there anything else I should be asking you?
• Is there anything you want to ask me?

Of course some of these may not be appropriate for a particular project. It will help if
the entire list is scanned for each interview to be sure to include appropriate ones.

(From “Exploring Requirements Quality Before Design” by Gause & Weinberg
[Gau1989].)

3.2.3 Requirements Workshops

3.2.4 Brainstorming and Idea Redirection

 - - 15

3.2.5 Storyboards

3.3 Stakeholders

Elicitation of a good set of requirements requires knowing all those who are involved
with the project. These stakeholders can consist of state officials, any members of the
development team assigned to the project, management, clerks, any person who will use
this system to do productive work.

A representative of all these groups should be included in the requirements gathering
process. Leaving just one important stakeholder out of the discussion can cause a failure
of the system late in the development cycle when it costs a lot to fix.

3.4 Use Cases

Often the hardest part in beginning to develop a set of software requirements is simply
getting started. No other way is know than to simply take the first step. A technique that
is used with UML is called Use Cases. These often get the user and developer off square
one and into the writing process.

A Use Case is a very simple concept. It takes an actor playing a particular role and
determines “what happens” when this actor performs some activity to be controlled by
the developing software system. It could be as simple as a new user “logging on” to the
system or a receivables clerk handling “back orders”. In any case the focus is very
narrow and only the activities needed to do this particular Use Case are listed.

UML provides a diagramming technique to support Use Cases, but simple unambiguous
or structured English on a yellow pad would suffice. A number of examples are provided
at the end of this section.

To define a Use Case, do the following:

• Pick an actor from among the users. (system manager, payables clerk,
administrator, field technician, etc.)

• Pick a roll that this actor will be performing with the software system. (logging
on, entering a new vendor, accessing a payable account, adjusting an employees
pay rate, etc.)

• Then, thinking about that actor performing that role, what should happen?

This will be extended with examples.

3.5 “Mary Had A Little Lamb” Heuristic

Gause & Weinberg propose a simple technique to elicit all the possibilities from a
requirement statement. It is called the Mary Had A Little Lamb heuristic and is quite
simple to operate. You just repeat the sentence you are analyzing putting emphasis on

 - - 16

each work in sequence. Then you think about the other information that might be
revealed by this emphasis.

• MARY had a little lamb.
• Mary HAD a little lamb.
• Mary had A little lamb.
• Mary had a LITTLE lamb.
• Mary had a little LAMB.

Then you continue with combinations until you have all the sentence covered. Many of
these words will add little or nothing to the understanding of the requirement. But, any
insight gained is worth the small effort involved.

• MARY HAD a little lamb.
• Mary HAD A little lamb.
• Mary had A LITTLE lamb.
• …
• MARY HAD A LITTLE LAMB.

Try this on the requirements you are creating and watch what additional information is
extracted.

The requirements process is detailed in Appendix B.

This portion is incomplete at this time.

4. Project Management

All software development life cycle methodologies suggest that there be some sort of
plan for the project, but most leave the details to the interested reader. We have
integrated the suggestions of the PMP [Hel2004] and other authors [to be added] to make
the requirements for the project plan more explicit.

A project plan has nine knowledge areas [Hel2004]:

• Integration Management
• Scope Management
• Time Management
• Cost Management
• Quality Management
• Human Resource Management
• Communications Management
• Risk Management
• Procurement Management

 - - 17

Most of these are obvious, but Project Integration Management can be best defined as a
dynamic process that coordinates all of the other parts of the plan to insure consistency.
We will not discuss this process explicitly, but it will be present in the ensuing
discussions.

This report will not deal with Human Resources Management, Communications or with
Project Procurement Management, which are out-of-scope.

This component is needed to meet the Software CMM requirement for Software Project
Control at Level 2 and Integrated Software Management at Level 3 [Ahe2004].

4.1 Scope Management
Scope Management is concerned with defining and controlling the work of the project, so
it incorporates product scope and project scope. There are five processes in this activity:
Initiation, Scope Planning, Scope Definition, Scope Verification and Scope Change
Control.

For a software project, this reduces to translating the Requirements Document into a
work plan and managing any ensuing changes. It begins in Planning phase with the
development of a preliminary plan that assumes a project scope as detailed in a scope
statement. The scope statement provides: a project justification, a product description,
project deliverables, project objectives and informal project requirements. The scope
statement if refined in the System Analysis phase and is used to create the Work
Breakdown Structure (WBS) which maps out the project deliverables and reduces each
to a set of identifiable tasks.

The Requirements Documents is superceded by the System Specification which may
result in some updates to the WBS, and these changes will continue into the maintenance
cycle. The Requirements Document, System Specification and WBS are living
documents that will change continuously during the project and must at all times, reflect
the current understanding of the project team regarding product requirements and task
assignments.

4.2 Time Management
Time Management has five processes: Activity Definition, Activity Sequencing, Activity
Duration Estimation, Schedule Development and Schedule Control. The Activity
Definition begins with the WBS and Scope statement, and in conjunction with historical
data, constraints and assumptions about the project, is used to reduce the WBS to a Task
List of activities that are identifiable and assignable. There is no specific criteria for
defining a task, but it should be small enough that the time estimate of the complete is
accurate to within some acceptable margin of error. Early in the process, it might be
reasonable to estimate development time as 3 months, assuming a possible error of 1
month, while later individual development tasks might be required to be estimated within
1 day. The Task List will be under constant change as the design and development
continue. The Task List should contain fields for the following:

 - - 18

• The task identifier
• The task description
• The estimated duration, minimum, expected and maximum
• Resources required
• Estimated resource cost
• Estimated total cost
• Actual time required
• Actual cost
• Notes from the project manager

The second time management structure is the Precedence Diagram which shows the
dependency relationship between the tasks. This document can show the project manager
the appropriate assignments to make to avoid bottlenecks and stoppages. It is based on
the time estimates in the task list and generates a set of paths through the project to
completion. It is also common to perform a Critical Path analysis of the precedence
diagram to determine which activities constitute the longest path through the task list,
which is called the critical path.

As with the scope, the time management tools are dynamic and must be updated
continuously to reflect new information and to collect data.

4.3 Cost Management
Cost Management has four processes: Resource Planning, Cost Estimating, Cost
Budgeting and Cost Control. Cost estimating produces data into the Task List and
Precedence Diagram so there are no new documents, but successful project management
depends on the collection and use of data for future estimates. Cost estimates are needed
for the Benefit/Cost Analysis and for improving project cost estimates.

4.4 Quality Management
Quality Management has three processes: Quality Planning, Quality Assurance and
Quality Control. Quality in software can be objective or subjective. Objective measures
are surveys of user satisfaction, lower operating costs, higher productivity, lower defect
and rework rates. It is important to collect as much information as possible, but the
reality is that information outside of the development group is expensive to collect and is
typically not done.

Most of these issues are outside of the scope of this document, but a defect tracking
system is part of the process, as is user feedback on software, training and
documentation.

4.5 Risk Management
Risk Management has six processes: Risk Management Planning, Qualitative Risk
Analysis, Quantitative Risk Analysis, Risk Response Planning, and Risk Monitoring and
Control. Risk can be defined as potential costs in time or other resources that could be
incurred. This impacts the SDLC is two ways: there could be risk associated with

 - - 19

estimates of time or resources in the development process, and there could be risks
associated with factors outside of the SDLC such as changing needs. External risks could
be due to:

• Budgetary changes
• Political issues
• Legal issues
• Environmental issues

The risks in the SDLC could be due to:

• Schedule slip
• Scope slip
• Technical issues
• Personnel issues

Each of these presents some danger that the project will fail or will incur more costs than
expected, possibly more than is tolerable. While these risks can only be partially
controlled, they can be planned for. During the planning stage, a Risk Assessment will
identify potential risks to the project, evaluate their potential impact and determine under
what conditions a project might be halted or reviewed. At this stage, it might be
necessary to halt a project if the risks are substantial.

During the System Analysis phase, a Risk Management Plan for the SDLC will be
developed which will detail what risks are to be considered and how their impact should
be evaluated with regard to the project. A Risk Assessment document prepared at each
stage is used to evaluate the risk under the Risk Management Plan.

For example, during the System Design phase, the project team might determine that a
particular task involves technology for which they lack experience. This is a higher than
normal risk, because the development time estimates, and possibly even the feasibility of
the project, are in question. The team and project manager should evaluate this potential
risk in determining how to proceed. One possible risk reduction strategy borrowed from
Agile development is to have part of the team pursue this development until they are
certain of the time and cost estimates and then use the new data.

The project management process is detailed in Appendix C.

5. Software Design

This component of the project comes exclusively from the USDP and is concerned with
developing an Architectural Model and Design Model primarily on the Requirements
Document. We are proposing to use UML for these processes as is used in the USDP and
documented in [Boo2004], [Mak2005] and [Rum2005]. The methods described here
meet the Software CMM requirements for Software Product Engineering at Level 3.

 - - 20

These methods will detailed in the next report.

6. Software Development

This component of the project is described in broad terms by the USDP and is concerned
with converting the Design Architecture into running software. This phase is difficult to
describe in detail because it depends significantly on the languages used, the target
software and hardware platforms and the underlying goals, but there are standard
methods for managing this process that can be proposed. The methods described here
meet the Software CMM requirements for Peer Reviews at Level 3 and Software Quality
Assurance at Level 2.

These methods will detailed in the next report.

7. Project Implementation

This component is not specified by any standard process, but represents a collection of
activities that are vital to long-term success and quality control. The Software CMM
requirements for an Organization Training Program at Level 3, Software Configuration
Management at Level 2.

These methods will detailed in the next report.

 - - 21

Appendix A

Software Development LifeCycle Process

Use

Implement the software development life cycle.

Deliverables
• Installed software
• User Training
• User documentation
• Customer support plan

Personnel

• Project sponsor
• Project manager
• Software development team
• Trainers
• Technical writers

Planning
Starting Condition:

IT nomination request received or expected.
Deliverables:

Preliminary project description
Preliminary project plan and budget
Benefit/Cost Analysis
IT Nomination packet

Tasks:
Requirements development and management

Develop project description (Form ProjDesc).
Identify project stakeholders.
Develop a preliminary deliverables manifest (Form DelivManifest).

Project management
Develop an initial project team (Form TeamManifest).
Develop a preliminary work scope (Form WorkScope).
Create a preliminary plan and schedule (Process ProjectManage).
Develop a preliminary risk assessment (Form RiskAssess).
Develop a Benefit/Cost Analysis (Form BCAnalysis).
Plan the System Analysis phase (Process ProjectManage).

Software design
Create the Use Case business model (Form BusModel).

Software development

 - - 22

Project implementation

System Analysis
Starting Condition:

Decision is made to proceed with the project.
Deliverables:

Requirements document
Data dictionary
Project workscope
Baseline project timeline
Baseline project task list
Risk management plan
Updated Benefit/Cost Analysis

Tasks:
Requirements development and management

Develop the requirements document (Process DevelopRD).
Project management

Identify project sponsor and project manager (Form InitiateProject).
Develop a project work scope (Form WorkScope).
Develop a baseline project plan (Process ProjectManage).
Develop the risk management plan (Form RiskTgmtPlan).
Finalize the project team (Form TeamManifest).
Update benefit-cost analysis (Form BCAnalysis).
Plan the System Design phase (Process ProjectManage).

Software design
Develop a data dictionary (Process DevelopRD).

Software development
Project implementation

System Design

Starting Condition:
Requirements document has reached a stable state.

Deliverables:
System specification
Updated project plan
Software Analysis Model
User interface storyboards
Security plan
Acceptance test plan and test cases
Documentation plan
User support plan
Training plan
Conversion plan

Tasks:
Requirements development and management

Develop the system specification (Form SysSpec).

 - - 23

Update requirements (Form RD).
Project management

Update the project plan (Process ProjectManage).
Plan the Technical design phase (Process ProjectManage).

Software design
Develop the Analysis Model (Process AnalysisModel).
Develop the data dictionary model (Form DataDictModel).
Develop the user interface storyboards (Form UserSB).

Software development
Project implementation

Develop a security plan (Form SecPlan).
Develop a system test plan (Form SysTestPlan).
Develop an acceptance test plan (Form AccTestPlan).
Develop the acceptance test cases (Form AccTestCase).
Develop the documentation plan (Form DocPlan).
Develop a user support plan (Form CustSuppPlan).
Develop a training plan (Form TrainingPlan).
Develop a conversion plan (Form ConversionPlan).

Technical Design

Starting Condition:
IT nomination request received or expected.

Deliverables:
Software Design Model
User interface mock-ups
Unit test plan
Update system specification and requirements document
Defect tracking system
Updated project plan

Tasks:
Requirements development and management

Update the requirements document (Form RD).
Update the system specification document (Form SysSpec).

Project management
Update the project plan (Process ProjectManage).
Create a Development phase plan (Process ProjectManage).

Software design
Develop the Design Model (Process DesignModel).
Develop the data model specification (Process DataModelDesign).
Develop the user interface mockups (Form UserIntMockup).

Software development
Develop a unit test plan (Form UnitTestPlan).

Project implementation

 - - 24

Create a defect tracking system (Form DefectTrack).
Update the system test plan (Form SysTestPlan).
Update the acceptance test plan (Form AccTestPlan).

Development
Starting Condition:

IT nomination request received or expected.
Deliverables:

Functioning and tested software system.
User documentation
Product documentation
Training courseware
Configuration management system

Tasks:
Requirements development and management

Update the requirements document (Form RD).
Update the specification document (Form SysSpec).

Project management
Update the project plan (Process ProjectManage).
Create an Implementation phase plan (Process ProjectManage)

Software design
Update the system design

Software development
Develop the running software (Process Develop).
Perform successful unit tests (Form UnitTestCert).

Project implementation
Develop the user documentation (Form UserDoc).
Develop the product documentation (Form ProductDoc).
Develop the training courseware (Form TrainingDoc).
Create a configuration management system (Form ConfigMgmt).
Perform successful system tests (Form SysTestCert).

Implementation

Starting Condition:
IT nomination request received or expected.

Deliverables:
Training surveys
User response surveys
Completed acceptance test
Updated and tested software
Updated user support plan

Tasks:
Requirements development and management

Review and update the requirements document (RD).
Review and update the specification document (SysSpec).

Project management
Update the project plan (Process ProjectManage).

 - - 25

Software design
Software development

Update product (Process ImplementUpdate).
Project implementation

Install the beta test software (Form BetaInstall).
Collect user feedback (Form UserFeedback).
Perform the acceptance test (Form AccTestCert).
Revise the user support plan (Form CustSuppPlan).
Complete training (Form TrainPlan).
Perform training (Process Train).
Execute a user survey (Form UserSatisfaction).

Conclusion
Starting Condition:

IT nomination request received or expected.
Deliverables:

Customer approval
Software in maintenance cycle
Analysis of project performance

Tasks:
Requirements development and management
Project management

Create a maintenance plan (Form MaintenancePlan).
Review the project (Process ProjectManage).
Update policies and procedures.

Software design
Software development
Project implementation

Finalize customer approval (Form FinalApproval).
Evaluate user survey results (Form UserSurveyResponse).
Software enters the maintenance cycle (Process MaintCycle).

 - - 26

Appendix B
Requirements Development

 - - 27

Appendix C
Project Management

with Microsoft Project 2003

Introduction

It is the desire of the MDT to use Microsoft Project 2003 to support project management,
and we believe that is an reasonable choice. In the following, we will discuss the various
tasks and deliverables expected from the project management system and how they can
be managed with Project 2003. It is not productive to separate the Project 2003 portion
of project management from any other parts, so the entire project will be discussed here.
Templates and forms will be delivered in electronic format at the completion of the
project.

The project management system is responsible for the following deliverables:

• Project schedules
• Work assignments
• Cost and time estimates
• Resource assignments
• Project assessments

These will be discussed in the context of the SDLC process described earlier.

Planning

The planning phase requires some preliminary project management efforts in order to
develop cost estimates and to insure that resources are available for a project. Typically,
the minimal effort is desirable because the project is not yet approved or funded, but
accurate estimates are important to avoid over-committing resources or discouraging
work. The deliverables are:

• Preliminary workscope
• Preliminary project team
• Preliminary schedule
• Preliminary risk assessment
• Benefit/Cost analysis
• Plan for system analysis phase (if project to proceed)

Preliminary Workscope
The workscope details the work that is expected on the project. At this point, the
details remain sketchy, but the document must precisely specify an understanding
between the two parties as to what is expected. A workscope document must
contain:

• A list of deliverables.
• What work is to be accomplished.

 - - 28

• Specific exclusions to the scope of work.
• A list of milestones marking project progress.
• How changes to scope will be handled.

The MDT workscope form requires a Business Processes entry to indicate
expected changes in business processes. Another item that is not typically
mandated by any best practice but could be useful is any interaction between this
system and any other software systems.

This document is identified as Form P-P-Workscope and requires the project
manager to convert the project description, assumptions and constraints into a list
of project deliverables, goals and justification. This document is the precursor to
the Requirements Document which will drive the development process and should
be based on the best information available regarding the desired outcomes of the
project. The workscope at this point is still preliminary and won’t be finalized
until the next phase.

Preliminary Project Team
This document is identified as Form P-P-Team and should specify the expertise
required, not individuals. This information will be moved into Project 2003 in
order to provide a basis for narrowing the assignments in the next phase and to
provide historical information for assessing the accuracy of the estimate.

Preliminary schedule
The preliminary schedule should attempt to identify the expected starting and
completion dates for each phase, and of course, the total project time. At this
stage, these estimates are subject to significant error, but a reasonable estimate of
cost depends on this data. This information will be entered directly into Project
2003 using Template P-P-PrelimSched.

Preliminary Risk Assessment
The risk assessment is preliminary at this stage, and should include potential
sources of risk in the project and the risk potential. At this stage, an identifiable
large risk could result in the project being terminated, such as the possibility that
users will resist conversion or that personnel vacancies will delay the project
unacceptably. Form P-P-Risk will be used for this task. One risk is that better
analysis will indicate that the project costs are likely to be much higher than
anticipated.

Benefit/Cost analysis
A benefit/cost analysis attempts to determine if the balance between the benefits
and cost of a project justify proceeding. The difficulty is that the benefits are
often not monetary, so a benefit could require some judgment as to its value, or it
could be a requirement that mandates the project be completed. Nevertheless, this
process, as implemented by Form P-P-BCAnalysis is important and should not
be ignored.

 - - 29

Plan for System Analysis Phase
In order to proceed to the next phase, the project team should determine who will
provide which services and what the expected timeline should be. There is a bit
of overlap with the next phase, as the most likely scenario is that the project
management deliverables from that phase will be used to make this determination.
However, the personnel involved in the project need to be aware of their roles and
their must be a timeline specifying when the phase is to be complete and any
milestones that are required.

System Analysis

In this phase, the principals on each side of the project (customer and development) need
to be identified and the preliminary plan needs to expanded to as great a degree as
possible at this time. This is also the time to make certain decisions about the conduct of
the project, such as risk management, and to update the benefit/cost analysis to insure that
the project is still tenable.

The deliverables are:

Project management
Identify project sponsor and project manager.
Develop a project work scope.
Develop a baseline project plan.
Finalize the project team.
Update benefit-cost analysis.
Develop the risk management plan.
Plan the System Design phase.

Project Principals
The project principals are the project manager and the project sponsor (on the
customer side). These two people are responsible for the communication and
integration between the two parties and their roles must be established early in the
process. Other stakeholders should also be identified to as great an extent as
possible. For example, if the sponsor elects people to represent him in the
requirements solicitation process or in designing training protocols. The form for
this activity is P-A-Principals.

Workscope
The workscope developed in the Planning phase should be updated and finalized
to as great an extent as possible. The project manager and sponsor should execute
a formal agreement regarding the content of this document.

Baseline Plan

 - - 30

The workscope and preliminary plan are used to create a baseline plan, consisting
of a task list and timeline. These will be developed using Microsoft Project 2003
as Tmpl-P-A-Tasklist and Tmpl-P-A-Timeline.

Project Team
Given the task list and the workscope, it should be possible to finalize the project
team members, what role they will play in the project and the expected demands
on their time. Assignments and tracking of effort will be managed using
MP2003.

Updated Benefit-Cost Analysis
At this point, the benefit-cost analysis should be updated showing the new
estimate of costs, and a decision should be made as to how to proceed. This
process should be repeated each time the plan is updated significantly, but this is
the first time where considerable effort has gone into estimating staffing
requirements, so it is an opportunity to test the accuracy of earlier estimates and to
insure that costs are not increasing significantly.

Risk Management Plan
The risk management plan details what risks are considered to be potential threats
to the timely completion of the project, how they should be managed and if there
are points in time where the project should be reviewed before continuing. Form
P-A-RiskManPlan collects some data, but many aspects of this activity are
subjective.

More to come here

System Design Phase Plan
The plan for completing the System Design phase should be completed here. All
personnel involved should be accounted for and their time made available, all
resources should be in place, and specific procedures and policies covering this
part of the project should be known by all involved. This includes any software to
be used for the design, databases or repositories needed, methods to be used in the
design and standards for documenting the design.

System Design
In this phase, the plan needs to be updated to reflect any changes and to plan the next
phase. The deliverables are:

• Update the project plan.
• Plan the Technical design phase.

Plan Update
Technical Design Plan

Technical Design

 - - 31

In this phase, the plan needs to be updated to reflect any changes and to plan the next
phase. The deliverables are:

• Update the project plan.
• Create a Development phase plan.

Plan Update
Development Plan

The deliverables are:

Development
In this phase, the plan needs to be updated to reflect any changes and to plan the next
phase. The deliverables are:

• Update the project plan.
• Create an Implementation phase plan.

Plan Update
Development Plan

Implementation
In this phase, the plan needs to be updated to reflect any changes and to plan the next
phase. The deliverables are:

• Update the project plan.

Plan Update

Conclusion
In this phase, there is actually considerable planning effort. The maintenance cycle
begins and that requires planning, and this is the point in time where the project is
reviewed, the performance of the plan is judged and significant amounts of measurement
data are processed and used to update policies and procedures.

The deliverables are:

• Create a maintenance plan.
• Review the project.
• Update policies and procedures.

Create a Maintenance Plan
Review the project
Update Policies and Procedures

 - - 32

Appendix D
Software Design Details

Objective:

Manage the software development lifecycle and collect data to be used for process
improvement and reengineering.

Deliverables
• Analysis model
• Design model

Planning
System Analysis
System Design
Technical Design
Development
Implementation
Conclusion

 - - 33

Appendix E
Software Development Process

Use
Manage the software development lifecycle and collect data to be used for process
improvement and reengineering.

Deliverables
• Tested software
• User Documentation
• Product documentation

Personnel

• Project manager
• Software development team

Planning
System Analysis
System Design
Technical Design
Development
Implementation
Conclusion

 - - 34

Appendix F
Forms

Our Form MDT Form

P-P-BCAnalysis
P-P-Prelim
P-P-Risk
P-P-Team
P-A-Principals
P-A-RiskManPlan
P-P-Workscope PMM05_SCOPE_STATEMENT_01.DOC

 - - 35

Appendix G
Templates

Our Form MDT Form
P-P-PrelimSched
P-A-Tasklist
P-A-Timeline

 - - 36

References

[Ahe2004] Ahern, D., et al, CMMI Distilled, Addison-Wesley, 2004.

[Bro1995] Brooks, F., The Mythical Man-Month, Addison-Wesley, 1995.

[DeM1999] DeMarco, T., Lister, T., Peopleware, Dorsett House Publishing, 1999.

[Fow2004] Fowler, M., UML Distilled, Third Edition, Addison-Wesley Pearson, 2004.

[Gau1989] Gause, D., Weinberg, M., Exploring Requirments: Quality Before Design,

Dorsett House Publishing, 1989.

[Gla2003] Glass, R., Facts and Fallacies of Software Engineering, Addison-Wesley

Pearson, 2003.

[Hel2004] Heldman, Project Management Professional Study Guide, 2nd Edition,

Sybex, 2004.

[Jac1999] Jacobsen, I., et al, The Unified Software Development Process, Addison-

Wesley, 1999.

[Lef2003] Leffingwell, D, Widrig, D., Managing Software Requirments:A Use Case

Approach, Second Edition, Addison-Wesley, 2003.

[Kru2000] Krug, S., Don’t Make Me Think, New Riders Press, 2000.

[Mak2005] Maksimchuk, R., Naiburg, E., UML for Mere Mortals, Addison-Wesley

Pearson, 2005.

[Mar2005] Marasco, J., The Software Development Edge, Addison-Wesley Pearson,

2005.

[McC1996] McConnell, S., Rapid Development, Microsoft Press, 1996.

[Mel2004] Mellor, S., el al, MDA Distilled: Principles of Model-Driven Architecture,

Addison-Wesley, 2004.

[Pre2001] Pressman, R., Software Engineering, McGraw, 2001.

[Rum2005] Rumbaugh, J., et al, The Unified Modeling Language Reference Manual,

Addison-Wesley, 2005.

[Spo2001] Spolsky, J., User Interface Design for Programmers, Apress, 2001.

 - - 37

[Spo2004] Spolsky, J., Joel on Software, Apress, 2004.

